HAD DIF THE SECTION OF THE SECTION

Castle Blower, Inc.

About us

We have devoted ourselves in designing and manufacturing fans and blowers for industrial usages. Features of our fans and blowers include: high efficiency, low vibration, low noise, long life, and low running cost. The experiences of solving all types of problems that our clients had encountered have enriched our knowledge and capability.

DT Series fans are designed for industrial processes, dust collecting, pneumatic conveying and air conditioning. We also design other fans and blowers according to your specific requests. DT Series are excellent and best choice for your process solution.

Designs & Constructions

Gas Delivered

Air, Steam, Gas and Fume that is hot, erosive, corrosive, dust-content, explosive and toxic gas

Materials

Carbon Steel, Heat-Resistant Steel, Stainless Steel, Titanium, Nickel and other alloys, Corrosion-Resistant Coating: Rubber and Fiber-glass Wear-Resistant Treatment: Liner, Ceramic, Beads of Weld, and Spray Coating

<u>Tightness</u>

Standard: no special requirements for gas conveying under general conditions Gas-Tight: used when the gas delivered shall not leak

<u>Seals</u>

V-Ring Seal, Multi-plate Seal, Labyrinth Seal, Gland Packing Seal, Mechanical Seal, Water Seal

DT-1300S : with sound absorption material, and effectively reduces the noise.

All impellers are aerodynamically designed

for high efficiency and low noise. VVVV -b €# Par J T TE f]

Designs & Constructions

- A manhole and drain-hole are standard accessories.
 It is encased in a casing with smooth interior to ensure smooth airflow, and very convenient to check and clean the impeller.
- Located at top of a fan/blower, the hanging hook, fabricated from a complete steel sheet, is suitable for hanging in all directions and will not be deformed due to varied hanging direction.

- With precise and solid outside welding, the seams of scroll casing are free from moisture seepage and rusting corrosion.
- A unique design of inlet cone solves ineffective circular flow within the casing to improve efficiency and reduce noise
- The rotating elements are dynamically balanced by "HOFFMANN" computer balancing machines.
- The inlet cone and impeller is connected by insertion which ensures smooth airflow, back-stream and low noise.
- The entire series are fitted with tapered sleeve
 V-belt, featuring precise center alignment, easy
 dismantling and reloading of the conveyor pulley
 without requiring a puller.
- ✓ The connection of impeller and shaft uses tapered shaft configuration that ensures tight fit, precise center alignment and easy dismantling and reloading.
- The coupling of fan/blower operates on a tapered sleeve, featuring precise center alignment, easy dismantling and reloading without requiring a puller.
- ✓ The entire series of fan/blower are fitted with Sweden-imported SKF bearings.
- The entire series are fitted with German-imported
 "Opti-belt", high tensile V-belt featuring long life time and strong transmission horsepower.

Technical Data

Terminology

Capacity:	Capacity at inlet condition
Static pressure:	Outlet pressure of blower (at inlet STP of air)
Power (HP):	Motor rated required at the point of capacity and static pressure
STP:	20 °C, 1atm, RH = 65% (γ=1.2kg/m ³ for Air)
NTP:	0 °C, 1atm, RH = 0% (γ=1.293kg/m ³ for Air)
ηmax:	The highest efficiency point

Conversion

Capacity in this catalogue is the inlet capacity.

Static Pressure is the outlet pressure (Inlet gas is STP air).

If the operation specifications differ from the above conditions, please convert according to the following formulas.

a (3) · · ·

Capacity (Q):

When Capacity is Q_N (NTP) condition, please convert it into Q (STP).

$$Q = Q_{N} \times \frac{273 + T_{1}}{273} \times \frac{10332}{P_{1} - 0.378 \phi Psat} (M^{3} / min)$$

Static Pressure (Ps):

1. When the temp of the suction is not at 20°C,

$$P_{s} = P_{so} \times \frac{273 + t_{1}}{293} (mmAq)$$

2. When Ps is at vacuum (suction) condition,

$$P_{s} = P_{so} \times \frac{10332}{10332 - P_{so}} (mmAq)$$

Blower Similarity Laws

$\frac{Q_2}{Q_1} = \frac{N_2}{N_1}$
$\frac{P_{S2}}{P_{S1}} = \left(\frac{N_2}{N_1}\right)^2 = \frac{Y_2}{Y_1}$
$\frac{HP_2}{HP_1} = \left(\frac{N_2}{N_1}\right)^3 = \frac{Y_2}{Y_1}$

Q(m ³ /min):	Capacity showing in this catalogue
Q _N (Nm ³ /min):	Capacity at NTP condition
t ₁ (°C):	The temp at the inlet of a blower
Ps(mmAq):	Static Pressure showing in this catalogue
Pso(mmAq):	Operating Static Pressure
P₁(mmAq):	Inlet absolute pressure
φ(%):	Relative humidity

- Psat(mmAq) Saturated vapor pressure
 - Q: Capacity
 - Ps: Static Pressure
 - HP: Power
 - N: RPM of a blower
 - *γ*: Gas Density

Model Instruction

There are 11 models in DT-1000 series single suction fans:

DT-1000S ~ DT-2000S

Selection Procedure:

- 1. Choose the most suitable model by Capacity and Static Pressure.
- 2. Choose the right RPM
- 3. Motor rated = BHP x 1.15~1.20

Example:									
Under STP Co	ondition, Q = 1	450 m³/mir	n, Ps = 250 mmAq						
Model	RPM	BHP	Motor rated	Unit Price	Running Cost				
DT-1600S	1200RPM	117HP	117HPx1.15=135HP	Lower	Higher				
			→150HP						
DT-1500S	950RPM	107HP	107HPx1.15=123HP	Higher	Lower				
			→125HP						
Therefore, Model B is more economical in a long term.									

General Performance

CAPACITY m3/min (SUCTION)

Vibration Allowance of Blower

Amplitude a(µm) vs. Vibration speed "V" (mm/s)

$$v = \frac{\mu\omega}{2 \times 10^3} = \frac{a\pi n}{6 \times 10^4}$$

\omega : Angular velocity = $\frac{2\pi n}{60}$ (rad / s)

		I		
	DISCHARG	5, 200, 250	H+;	5x6.5
	ON (0.D.)	150, 17	2222K	[150x7!
	ED SS	100, 125	22219K+H	[150x75x6.5
		40, 50, 60, 75	22217K+H	[125x65x6
	SUCTION SUCTION CL. of DISCHARCE SHAFT SHAFT SHAFT SHAFT SHAFT SCHARCE CL. of DISCHARCE SHAFT SCHARCE SHAFT SCHARCE SC	25, 30	22215K+H	[125x65x6
	FOUNDATION (A MOTOR	5, 20	2215K+H	125x65x6
of Outlet	TOR AT RIGHT SIDE)		IGS 2	DN BASE
Direction	FOUNDATION (MO	보	BEARIN	COMMC

Castle Blower

Weight (without motor)	200	001	700	700	800	006	800	800	800	900	1000	900	900	1000	1000	1200	1100	1100	1200	1300	1400	1300	1300	1400	1500	1600
Φđ	40	2	19	19	19	24	19	19	19	19	24	19	19	19	24	24	19	19	19	24	24	19	19	19	24	24
>	700	140	720	720	880	980	720	720	720	880	980	720	720	880	980	1080	720	720	880	980	1080	720	720	880	980	1080
s	040	010	940	940	940	940	1040	1040	1040	1040	1040	1140	1140	1140	1140	1140	1240	1240	1240	1240	1240	1340	1340	1340	1340	1340
Я	700	00.5	700	700	850	1000	650	650	650	800	950	600	600	750	900	1050	700	700	850	1000	1150	650	650	800	950	1100
Ø	670	0.0	670	670	670	690	770	770	770	770	790	870	870	870	890	890	870	870	870	890	890	970	970	970	990	990
z	1200	0071	1200	1200	1350	1500	1200	1200	1200	1350	1500	1200	1200	1350	1500	1650	1350	1350	1500	1650	1800	1350	1350	1500	1650	1800
Ŵ	600	200	500	500	500	500	550	550	550	550	550	600	600	600	600	600	650	650	650	650	650	700	700	700	700	700
L	266	200	365	365	365	375	415	415	415	415	425	465	465	465	475	475	465	465	465	475	475	515	515	515	525	525
¥	1006	2001	1085	1085	1245	1355	1135	1135	1135	1295	1405	1185	1185	1345	1455	1555	1185	1185	1345	1455	1555	1235	1235	1395	1505	1605
7	1260	1200	1250	1250	1400	1500	1300	1300	1300	1450	1550	1350	1350	1500	1600	1760	1350	135	1500	1600	1760	1400	1400	1550	1650	1810
-	000	000	390	390	390	390	440	440	440	440	440	490	490	490	490	490	490	490	490	490	490	540	540	540	540	540
H6 D-13 D-13	060	000	950	950	950	950	1000	1000	1000	1000	1000	1100	1100	1100	1100	1100	1150	1150	1150	1150	1150	1250	1250	1250	1250	1250
H5 P-13 P-13	1100	2011	1100	1100	1100	1100	1200	1200	1200	1200	1200	1250	1250	1250	1250	1250	1350	1350	1350	1350	1350	1500	1500	1500	1500	1500
7 D H	000		800	800	800	800	850	850	850	850	850	900	900	900	900	900	950	950	950	950	950	1050	1050	1050	1050	1050
E 52	080	3	050	050	050	050	1100	1100	1100	1100	1100	200	200	200	200	200	300	300	300	300	300	400	400	400	400	400
R 25	090	7.00	250	250	250	250	350	350	350	350	350	450	450	450	450	450	. 009	600	600	600	600	100	200	200	700	002
표 문 문	000	2000	900	900	900	900	950	950 '	950	950 1	950	000	000	000	000	000	1100	1100	1100	1100	1100	200	200	200	200	200
 o	080		860	860	860	860	885	885	885	885	885	965	965	965 1	965	965 1	035	035	035	035	035	130	130	130	130	130
ш.	010	2	010	010	010	010	050	050	050	050	050	145	145	145	145	145	235 1	235 1	235 1	235 1	235 1	340	340 1	340	340 1	340
ш	700	3	700 1	700 1	700 1	1 002	800 1	800 1	800 1	800 1	800 1	850 1	850 1	850 1	850 1	850 1	900 1	900 1	900 1	900 1	900 1	000	000	000	000	000
Q Q	000	3	000	000	000	000	100	100	100	100	100	200	200	200	200	200	300	300	300	300	300	400 1	400 1	400 1	400 1	400 1
U	500 4		600 1	600 1	600 1	600 1	660 1	660 1	660 1	660 1	660 1	720 1	720 1	720 1	720 1	720 1	780 1	780 1	780 1	780 1	780 1	840 1	840 1	840 1	840 1	840 1
в	BOO		600	600	600	600	200	200	200	700	700	800	800	800	800	800	800	800	800	800	800	900	900	900	900	900
Æ	000	8	000	000	000	000	100	100	1100	100	100	200	200	200	200	200	300	300	300	300	300	400	400	400	400	400
۵.	~		-	-	75 1	5				, 75	5	-	-	, 75	5	200 1	-	-	, 75 1	5	200 1	-		, 75 1	5 1	200 1
с 4	7 6 10	2	15, 20	25, 30	50, 60	00, 12	7.5, 10	15, 20	25, 30	50, 60	00, 12	15, 20	25, 30	50, 60	00, 12	, 175,	15,20	25, 30	50, 60	00, 12	,175,	15,20	25, 30	50, 60	00, 12	,175,
I					40,	+				40,	-			40,	-	150			40,	-	150			40,	1	150
MODEL	DT-1000S								DT-1200S					DT-1300S					DT-1400S							

			I	1 1
	DISCHARGE	20, 400	2224K+H	:00×80×7.5
	('.G.O) NOT	200, 250 3.	4	.5 [2
		150, 175,	2222K+F	[150x75x6
	RIGHT SIDE VIEW	100, 125	22219K+H	[150x75x6.5
		40, 50, 60, 75	22217K+H	[125x65x6
		25, 30	22215K+H	[125x65x6
et	T SIDE)	15, 20	22215K+H	[125x65x6
ction of Outle	ATION (MOTOR AT RICH	ЧЪ	BEARINGS	COMMON BASE
Direc		-		~

- 14 -

Castle Blower

Weight	(without motor)	1500	1500	1600	1700	1800	1700	1800	1900	2000	1900	2100	2300	2500	2400	2600	2800	3000	2900	3100	3300	3500	3400	3600	3800	4000
	φ	19	19	19	19	24	19	19	24	24	19	19	24	24	19	24	24	28	19	24	24	28	19	24	24	28
	>	720	720	880	980	1080	720	880	980	1080	720	880	980	1080	880	980	1080	1180	880	980	1080	1180	880	980	1080	1180
Î	Ś	1440	1440	1440	1440	1440	1540	1540	1540	1540	1640	1640	1640	1640	1740	1740	1740	1740	1840	1840	1840	1840	1940	1940	1940	1940
	с	600	600	750	900	1050	200	850	1000	1150	650	800	950	1100	900	1050	1200	1350	850	1000	1150	1300	800	950	1100	1250
8	Ø	107	1070	1070	1090	1090	1070	1070	1090	1090	1170	1170	1190	1190	1270	1290	1290	1300	1270	1290	1290	1300	1370	1390	1390	1400
Ĩ	z	1350	1350	1500	1650	1800	1500	1650	1800	1950	1500	1650	1800	1950	1800	1950	2100	2250	1800	1950	2100	2250	1800	1950	2100	2250
	٤	750	750	750	750	750	800	800	800	800	850	850	850	850	900	900	900	900	950	950	950	950	1000	1000	1000	1000
	-	565	565	565	575	575	565	565	575	575	615	615	625	625	665	675	675	680	665	675	675	680	715	725	725	730
8	¥	1285	1285	1445	1555	1655	1285	1445	1555	1655	1355	1495	1605	1705	1545	1655	1755	1860	1545	1655	1755	1860	1595	1705	1805	1910
Ì	7	1450	1450	1600	1700	1860	1450	1600	1700	1860	1500	1650	1750	1910	1700	1800	1960	2165	1700	1800	1960	2165	1750	1850	2010	2215
ĺ.	-22	590	590	590	590	590	590	590	590	590	640	640	640	640	690	690	690	690	690	690	690	690	740	740	740	740
£	Р13 Р14	1350	1350	1350	1350	1350	1450	1450	1450	1450	1550	1550	1550	1550	1650	1650	1650	1650	1800	1800	1800	1800	1850	1850	1850	1850
H5	Р1 12 12	1600	1600	1600	1600	1600	1700	1700	1700	1700	1800	1800	1800	1800	1900	1900	1900	1900	2050	2050	2050	2050	2150	2150	2150	2150
Ŧ	56 7	1150	1150	1150	1150	1150	200	1200	200	200	300	300	300	300	400	400	400	300	450	450	450	450	500	1500	500	1500
£	55	500	500	500	500	500	600	, 009	600	, 009	200	700	100	002	. 008	, 008	800	800	900	900	900	900	5000	5000	5000	2000
Ŷ	55	800	800	800	800	800	900	900	900	900	050	050	050	050 1	150 1	150 1	150 1	150 1	300	300 1	300 1	300 1	400 2	400	400	400 2
H	55	250 1	250 1	250 1	250 1	250 1	350 1	350 1	350 1	350 1	450 2	450 2	450 2	450 2	500 2	500 2	500 2	500 2	600 2	600 2	600 2	600 2	650 2	650 2	650 2	650 2
	ۍ ن	200 1	200 1	200 1	200 1	200 1	285 1	285 1	285 1	285 1	375 1	375 1	375 1	375 1	470 1	470 1	470 1	470 1	540 1	540 1	540 1	540 1	620 1	620 1	620 1	620 1
-	LL.	1425 1	1425 1	1425 1	1425 1	1425 1	1525 1	1525 1	1525	1525	1625 1	1625 1	1625	1625 1	1730 1	1730 1	1730	1730	1825 1	1825	1825 1	1825 1	1920	1920	1920	1920
	ш	1050	1050	1050	1050	1050	1150	1150	1150	1150	1200	1200	1200	1200	1300	1300	1300	1300	1350	1350	1350	1350	1400	1400	1400	1400
	₽	1500	1500	1500	1500	1500	1600	1600	1600	1600	1700	1700	1700	1700	1800	1800	1800	1800	1900	1900	1900	1900	2000	2000	2000	2000
	o	900	900	900	900	900	960	960	960	960	1020	1020	1020	1020	1080	1080	1080	1080	1140	1140	1140	1140	1200	1200	1200	1200
2	в	1000	1000	1000	1000	1000	1000	1000	1000	1000	1100	1100	1100	1100	1200	1200	1200	1200	1200	1200	1200	1200	1300	1300	1300	1300
	∢	1500	1500	1500	1500	1500	1600	1600	1600	1600	1700	1700	1700	1700	1800	1800	1800	1800	1900	1900	1900	1900	2000	2000	2000	2000
	HP 4P	15, 20	25, 30	40, 50, 60, 75	100, 125	150, 175, 200	25, 30	40, 50, 60, 75	100, 125	150, 175, 200, 250	25, 30	40, 50, 60, 75	100, 125	150, 175, 200, 250	40, 50, 60, 75	100, 125	150, 175, 200, 250	320	40, 50, 60, 75	100, 125	150, 175, 200, 250	320, 400	40, 50, 60, 75	100, 125	150, 175, 200, 250	320, 400
	MODEL						DT 4 7000	0000			DT 10000	00001-10			DT 1 0000	-consi-ira			1 20000	-00007-171						

Flow Control

Suction	Damper
040000	Dampor

W

ΦD	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
W	350	350	400	400	400	450	450	450	450	500	500

Inlet Vane Controller (IVC)

ΦD	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
W	350	350	350	400	400	400	400	400	400	400	400

Please provide the following information in an inquiry.

1. Application and Condition

Describe the purpose of usage. Are the blowers operating continuously or intermittently?

2. Flow Rate

Describe whether the flow rate is at standard condition or normal condition. Unless specified, the flow rate is calculated under suction condition, and is not seen as discharge flow rate)

3. Pressure

Describe whether the pressure is constant or variable, if variable; specify the range and the relationship between air flow rate and pressure.

Describe whether the pressure shows static pressure of the discharge or the difference between suction and discharge pressure.

State whether suction pressure is atmospheric pressure; otherwise specify suction and discharge pressure respectively.

4. Type of Gas and Specific Gravity

Specify the following:

Type of gas and its components, content of impurities and their sizes, specific gravity, chemical prosperities, suggestions for materials, explosive and/or toxic nature (regarded as normal temperature, normal-pressure air unless specified)

5. Gas Temperature

DT Series turbo fans are normally used for normal temperature at suction. If suction temperature is higher than normal temperature, please let us know.

6. Type of Prime Mover

When a motor is used as prime mover, specify the voltage, frequency and power supply condition.

7. Painting

#3 is the standard color or DT Series blowers, if other colors are required, please let us know.

Unit Conversion

	mmAq	Pa=N/m ²	daPa	mbar	psi	kgf/m ²	atm
1mmAq	1	9.8	0.98	9.807×10 ⁻²	1.422×10 ⁻³	1	9.677×10 ⁻⁵
1Pa=1N/m ²	0.102	1	0.1	1×10 ⁻²	1.451×10 ⁻⁴	0.102	9.872×10 ⁻⁶
1daPa	1.02	10	1	0.1	1.451×10 ⁻³	1.02	9.872×10 ⁻⁵
1mbar	10.2	100	10	1	1.451×10 ⁻²	10.2	9.872×10 ⁻⁴
1psi	703	6888	688.8	68.88	1	703	6.802×10 ⁻²
1kgf/m ²	1	9.8	0.98	9.807×10 ⁻²	1.422×10 ⁻³	1	9.677×10 ⁻⁵
1atm	10332	101300	10130	1013	14.7	10332	1

Pressure

Capacity

	m³/min	m³/s	m³/h	ft³/min=cfm
1m³/min	1	0.017	60	35.31
1m³/s	60	1	3600	2118.6
1m³/h	0.017	2.777×10 ⁻⁴	1	0.589
1ft ³ /min=cfm	0.0283	4.720×10 ⁻⁴	1.699	1

Power

	HP	kW	kg-m/sec	PS
1 HP	1	0.746	76.038	1.014
1 kW	1.341	1	101.967	1.360
1 kg-m/sec	0.013	9.807×10⁻³	1	0.013
1 PS	0.986	0.736	74.988	1

Pressure Conversion Formula

1 Pa = 0.102 mmAq 1daPa = 10 Pa 1mbar = 10.197 mmAq 1mmHg = 13.6 mmAq 1psi = 703 mmAq 1Torr = 133.3 Pa 1Torr = 1.333 mbar

 \odot

 \odot

Main Products

 \bigcirc

 \bigcirc

 \bigcirc

Cutter Blowers Gas Tight Blowers Conveyor Blowers Low Noise Blowers Explosion Proof Blowers Wear-Resistance Blowers Corrosion-Resistance Blowers High Temperature Resistance Blowers

Mild Steel Fans & Blowers Mild Steel Multi-Steel Blowers Casting Blowers Casting Multi-Stage Blowers Leakless Dampers Accessories of Fan & Blowers Special Applications Fans & Blowers

Castle Blower, Inc. Tel: +886 2 29 05 19 86 Fax:+886 2 86 68 28 74 info@castleblower.com